Finding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model

Alireza Abdykian*, Zahra Safi

1 Department of physics, Malayer University, Malayer, Iran.

(Received 13 Sep. 2016; Revised 15 Oct. 2016; Accepted 21 Nov. 2016; Published 15 Dec. 2016)

Abstract In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k^2 quantum term arising from the collective electron density wave interference effects (which α is integer and constant and k is wave vector). The longitudinal plasmons are the electrostatic collective excitations of the solid electron gas. We have tried to use the quantum hydrodynamic model for studying of propagation of the electrostatic surface wave in single layer graphene, in the presence of an external and uniform magnetic field. The direction of magnetic field was selected in plane of graphene sheet. It shows the importance of quantum term from the collective electron density wave interference effects. By plotting the dispersion relation derived, it has been found that dispersion relation of surface modes depends significantly on these quantum effects (Bohm’s potential and statistical terms) and it should be taken into account in the case of magnetized or unmagnetized plasma; we have noticed successful description of the quantum hydrodynamic model. The quantum corrected hydrodynamic model can effectively describe the Plasmon dispersion spectrum in degenerate plasmas, since it takes into account the full picture of collective electron-wave interference via the quantum Bohm’s potential. By plotting the normalized dispersion relation, the behavior of two different wave types (lower- and higher- branches) was predicted. It was found that the lower-branch should not be propagated to the specific wave number (cut-off frequency). By drawing of the contour curve of the lower- and higher-branches modes, the areas that modes can be propagated were obtained. So, Quantum hydrodynamic model is an effective way to study the waves in various media.

Key words: Hydrodynamic Equations, Graphene, Electrostatic Waves, Dispersion Relation

1. INTRODUCTION

Graphene is an allotropes of carbon that are structurally as a single layer of carbon atoms connected in a honeycomb lattice in the form of a two-dimensional crystal material. Graphene, despite the emergence in recent few years, has become one of the most amazing and technologically appealing fields of scientific research which has captured enormous amount of attention among researchers of diverse fields [1].

* Corresponding author. E-mail: abdykian@gmail.com
The electrodynamics properties of graphene are shown in detail, the structure of energy bands in graphene net changes in the spectrum of Plasmon polariton and Plasmon- than conventional two-dimensional systems with electron dispersion is parabolic. Furthermore, the dynamic frequency dependent conductivity of graphene with strong nonlinear characteristics predicts its very promising applications in developments of future advanced terahertz source and detector technologies (terahertz gap technology) [2]. It has been found that graphene, usually considered as a gapless semiconductor, shows a profoundly different behavior from semiconductors, regarding the Plasmon excitation resonances [3]. The quantum hydrodynamics (QHD) model, since the first developments several decades ago, has become one of the most convenient and useful methods in description of collective modes in quantum plasmas. Recent development of effective hydrodynamic models incorporating the electron recoil, spin magnetization, and relativistic effects has turned the hydrodynamics approach into a direct method of evaluation of the collective modes in wide variety of plasmas [4, 5].

The most important component of a QHD, which causes different dispersion effects in quantum plasma compared to that of a classical counterpart, is the degeneracy pressure. However, the second order effects, such as the quantum electron diffraction and spin magnetization effects, has been shown to lead to observable effects on ion acoustic and magneto-sonic wave propagations and instabilities in quantum plasmas. if the background ions form a monolayer planar honeycomb lattice, the degenerate electrons fill the conical band dispersion container, the so-called Dirac cones. Such Dirac cones are described by a linear energy dispersion relation as

\[E = \hbar k_F v_F \] (with the characteristic Fermi energy of \(E_F = \hbar k_F v_F \)), quite similar to that of the massless photon gas, except that the valence free electrons in graphene possess subluminal particle velocities [6].

2. Dispersion Relations

Assume a collisionless completely degenerate zero-temperature electron fluid with fixed homogenous background ions and an ambient magnetic field of \(\mathbf{B} = B_0 \hat{z} \) in the x-direction in the graphene plane. By calculating the dispersion relation electrostatic waves to study the waves at the metal thin layer (graphene) paid [7]. Our closed hydrodynamic set of equations consists of the continuity, momentum and Poisson’s equations, written as

\[
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{e}{m_e} \left[-\nabla \Phi_{ind} + \mathbf{v} \times \mathbf{B} \right] - \frac{\nabla P_{2D}}{m_e n} + \frac{\hbar^2}{2m_e} \nabla \left(\frac{\nabla^2 \sqrt{n}}{\sqrt{n}} \right), \tag{1}
\]

\[
\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{v}) = 0, \tag{2}
\]

\[
\nabla \cdot \mathbf{E} = -\frac{e}{\varepsilon_0} \left(n - n_0 \right) \tag{3}
\]

Where \(n, P_{2D} \) and \(\mathbf{E} \) are the number of electron density, electrostatic potential induced and pressure fluid quantum and the total electric field. In order to calculate the electron fluid pressure fermion quantum degenerate, for example, it is assumed that the plasma is
in a state of complete degenerate. In two-dimensional, Dirac pressure for the quantum fluid plasma is defined $P_{2D} = \sqrt{2\pi / 3h} v_F n^{3/2}$ which $\sigma(r') = -en(r')$ is the surface charge density. Selecting changes of perturbed parameters like $\phi = \phi(z) \exp[i(k_x x - \omega t)]$, we can express the set of equations mentioned below, regarding the linear perturbation. By substituting relationships in equation (1) and with regard to linear disturbances can obtain the following equations.

$$-i \omega \vec{\nu} = -\frac{e}{m_c} \nabla \left(\frac{en}{8\pi \epsilon_0 k_x} \right) - \frac{e}{m_c} \vec{v} \times \vec{B}_0 - \frac{E_F}{2m_c n_0} \nabla n + \frac{\hbar^2}{4m_c^2 n_0} \nabla \left(\nabla^2 n \right), \quad (4)$$

$$-i \omega n + n_0 \nabla \cdot \vec{v} = 0, \quad (5)$$

Also the inducted electrostatic potential is defined as $\Phi_{ind} = -en/(2\epsilon_0 k_x)$ and $k_F = \sqrt{2\pi n_0}$ are used [8]. The Eq. (4) and the z-component of the curl of the Eq. (4), one can derive a relation between \vec{v} and n

$$\left(1 - \frac{e^2 B_0^2}{m_c^2 \omega^2} \right) \nabla \cdot \vec{v} = -\frac{i e^2}{8\pi \epsilon_0 \omega k_x} \nabla^2 n - \frac{i E_F}{2m_c \omega n_0} \nabla^2 n + \frac{i \hbar^2}{4m_c^2 \omega n_0} \nabla^4 n, \quad (6)$$

By substituting 5 on 6 and $\nabla^2 = \frac{\partial^2}{\partial z^2} - k_x^2$. We calculate the following equation.

$$\left(\frac{e^2 n_0}{8\pi \epsilon_0 m_c k_x} + \frac{E_F}{2m_c} + \frac{\hbar^2 k_x^2}{4m_c^2} \right) \frac{\partial^2 n}{\partial z^2} - \left(\frac{e^2 B_0^2}{m_c^2} + \frac{e^2 n_0}{8\pi \epsilon_0 m_c} k_x + \frac{E_F}{2m_c^2} k_x^2 + \frac{\hbar^2}{4m_c^2} - \omega^2 \right) n = 0 \quad (7)$$

To obtain equation (7), very slow nonlocal variations are neglected i.e. $k_x^{-2} \left(\partial^4 / \partial z^4 \right) << \partial^2 / \partial z^2 << k_x^2$. The following solution is proposed for the Eq. (7)

$$n(z) = \begin{cases} 0 & z \neq 0 \\ C \exp \left(-k_z |z| \right) & z = 0 \end{cases}, \quad (8)$$

where

$$k_z = \left(\frac{e^2 B_0^2}{m_c^2} + \frac{e^2 n_0}{8\pi \epsilon_0 m_c} k_x + \frac{E_F}{2m_c} k_x^2 + \frac{\hbar^2}{4m_c^2} - \omega^2 \right) \left(\frac{e^2 n_0}{8\pi \epsilon_0 m_c k_x} + \frac{E_F}{2m_c} + \frac{\hbar^2 k_x^2}{4m_c^2} \right) \quad (9)$$

$$-i \omega J_{1x} = -\frac{e^2 n_0}{2m_c k_x} \left(k_z^2 - k_x^2 \right) E_{1x} + i \frac{e E_F}{2m_c} k_x n_1 - i \frac{e \hbar^2}{4m_c^2} k_x \left(k_z^2 - k_x^2 \right) n_1 \quad (10)$$

$$-i \omega J_{1y} = \frac{e}{m_c} J_{1z} B_0 \quad (11)$$
By definition of \(A = \frac{E_F}{2m_e} + \frac{\hbar^2 k_x^2}{4m_e^2} \) and using some algebraic mathematical, one would easy the set mentioned equations.

\[
a_{11} J_{1x} + a_{12} J_{1z} = b_1 E_{1x},
\]

\[
a_{21} J_{1x} + a_{22} J_{1z} = b_2 E_{1z}
\]

Where the definition of coefficients are like the following

\[
a_{11} = i \left(\omega^2 - \omega_c^2 + A k_x^2 \right) \quad a_{21} = k_x k_z A
\]

\[
a_{12} = k_x k_z A \quad \quad \quad a_{22} = i \left(\omega^2 - A k_z^2 \right)
\]

\[
b_1 = \frac{e^2 n_0 \omega}{2m_e k_x} \left(k_z^2 - k_x^2 \right) \quad \quad \quad b_2 = \frac{e^2 n_0 \omega}{2m_e k_x} \left(k_z^2 - k_x^2 \right)
\]

Using the relation between \(\vec{E} \) and \(\vec{J} \) conductivity tensor as \(\sigma \) can be written as follows.

\[
\sigma = \begin{pmatrix}
\sigma_{xx} & \sigma_{xz} \\
\sigma_{zx} & \sigma_{zz}
\end{pmatrix},
\]

Using the Ampère's law can be written the dielectric tensor as follows.

\[
K = 1 + i \frac{\epsilon_0 \omega}{\sigma}
\]

By calculating the determination of Eq. (18), one can drive the dispersion relation for propagation of electrostatic surface waves on the single-layer graphene.

\[
|I| - \alpha k_F \left(\frac{k_z^2 - k_x^2}{k_x} \right)^2 \left(\omega^2 - \Omega_c^2 + A k_z^2 \right)
\]

\[
- \alpha k_F \left(\frac{k_z^2 - k_x^2}{k_x} \right)^2 \left(\omega^2 - A k_x^2 \right) - \alpha \left(\frac{k_z^2 - k_x^2}{k_x} \right)^2 = 0
\]

where

\[
|I| = -\omega^4 + \omega^2 \left(\Omega_c^2 - A k_z^2 + A k_x^2 \right) + A k_z^2 \Omega_c^2
\]

3. DISCUSSION

In this section, the numerical and analytical discussion is presented about the relationship dispersion i.e. Eq. (17). For two-dimensional single-layer graphene the numerical density
of electrons can be between \(n_0 \approx 10^{12} \text{cm}^{-2} \) and \(n_0 \approx 10^{14} \text{cm}^{-2} \) [9]. We have used for our calculation of the amount \(n_0 \approx 10^{13} \text{cm}^{-2} \). First, consider the case where there is no external field (i.e. \(\Omega_c = 0 \)). Therefore, the equation (17) to be reduced as following

\[
\omega^4 - \left(\frac{k_x^2 - k_z^2}{k_x} \right) (A k_x - 2\alpha)\omega^2 - \alpha \left(\frac{k_x^2 - k_z^2}{k_x} \right)^2 (A k_x - \alpha) = 0, \tag{18}
\]

By drawing the dispersion relation, one would find that there are two branches (lower and higher). Although both of them are starting from zero, by increasing the wave number they have different behavior. By increased gradually of the wave number \(k_x / k_F \), lower-branch reaches a certain amount (cutoff frequency), in spite of the fact that the higher-branch increases.

![Normalized dispersion relation](image)

Figure 1: Schematic of a normalized dispersion relation \(\omega / \omega_F \) in terms of \(k_x / k_F \) in the case of no magnetic field.

Figure 2 clearly shows that the unstable area is very large. To stimulate and propagate lower-branch, one would choose the exact wave number and magnetic fields of the blue waves.
According to Figure 3, the stable area for propagation of quantum electrostatic higher-branch is wider than the lower branches.
4. Conclusion

To sum up, Quantum hydrodynamic model is an effective way to study the waves in various media. In this paper, it has tried to use the quantum hydrodynamic model for studying of propagation of the electrostatic surface wave in single layer graphene, in the presence of an external and uniform magnetic field. The direction of magnetic field was selected in plane of graphene sheet. Considering the set of the quantum hydrodynamic equations, for fluid Dirac, the dispersion relation was obtained. Numerical values were used to analyze the dispersion relation. By plotting the normalized dispersion relation, the behavior of two different wave types (lower- and higher-branches) was predicted. It was found that the lower-branch should not be propagated to the specific wave number (cut-off frequency). By drawing of the contour curve of the lower- and higher-branches modes, the areas that modes can be

References
