پررسی ریزساختاری فوم نانوکامپوزیتی آلومینیوم تقویت شده با نانوذرات اکسید سیلیس

تولید شده با استفاده از امواج مافوق صوت

اکرم صالحی، اسد مجتبی زرجد، ابولفضل باباخانی و محمدصادق ابروی

چکیده
در این پژوهش با استفاده از امواج مافوق صوت نانوکامپوزیت زمینه آلومینیوم تقویت شده با نانوذرات اکسید سیلیس

فاکتهای کلیدی: امواج مافوق صوت، فوم و نانوکامپوزیت، پررسی ریزساختاری، پدیده ریزش مذاب

1. کارشناس ارشد مهندسی مواد، دانشگاه مهندسی، دانشگاه فردوسی مشهد و عضو گروه پژوهشی مواد جهاد دانشگاهی مشهد.
2. استاد گروه مهندسی مواد، دانشگاه فردوسی مشهد، دانشگاه فردوسی مشهد.
3. دانشیار گروه مهندسی مواد، دانشگاه فردوسی مشهد.
4. دانشجوی کارشناسی ارشد مهندسی مواد، دانشگاه مشهد، دانشگاه شهید باهنر کرمان و عضو گروه پژوهشی مواد جهاد دانشگاهی مشهد.
5. am_salehi85@yahoo.com
6. نویسنده مسئول مقاله:
پیشگفتار

در سال های اخیر توجه ویژهای به فویه‌های فلزی به عنوان یک ساختار سیک با قابلیت جذب ارزی در صنایع گوناگون نظر خودروسازی، هلیافا صنایع نظامی و... شده است. روش‌های تولید فویه‌های فلزی بسیار متنوع است. در این بین تکنیک‌های فوم سازی می‌تواند مناسب با استفاده از اعمال فوم ساز برای تولید در ابعاد صنعتی مناسب سی- باشد، چرا که در این محصولات تولید در آن آسان و هزینه آن به مرتبات کمتر از سایر روشهای است. [31]

نیمی از مذاب فلزات را به آسانی و به اندازه عامل قوم ساز به قدم پدید کرد. درک و جذب فلزات به صمت پایین دیدن حباب‌های یکتاً خیلی سبز رخ می‌دهد و نمی‌توان برای مدت زمانی طولانی پایینی با پایین بین یکی از مهم‌ترین خواص فیزیک‌شیمیایی فوم که باعث هم‌زمان سی‌پایی می‌شود، افزایش اندازه بارو و خواص فصل مشترکی گاز و مذاب کنترل می‌شود، بیشتر ریزش ۳

شود (شکل ۱-۹) [۱۸]

در این فرمایش، حباب‌ها مدت زیادی پایدار نیستند و فشار ایجاد شده در محیط بعدی باعث ترکیب حباب‌ها می‌شود. این همان بوده انتخاب حفره است که می‌تواند یک محیط غیر عضیفی برای واکنش‌های شیمیایی ایجاد کند. لحظه انفجار را دقیقه دقیق در نمود. ۸ تونی به هونگی مقطعی دمایی تا حدود ۱۰۰۰ درجه سانتی‌گراد K/۵۰۰ در نظر گرفته سرد کردن بیشتر از فلزات آلیاژ کربن‌پرده و ترشح‌گری آنها را افزایش می‌دهد. بنابراین، ساخت محصولات ریخت‌گری شده نانوکاپوژنی با کارایی بالا به هونگی عملی اکتشاف تریدره می‌ازد. از امواج مانند صوتی حتی می‌توان به عنوان یک عمل حذف کننده جراحی در ریخت‌گری فلزات استفاده کرد [۱۱-۱۳]

بررسی ریزساختار فوم نانوکاپوژنی آلومینیوم تقویت شده با ...

(MMNC)

گفته می‌شود [۱۸]

فرایند ترکیب کردن نانوژرده با استفاده از امواج مانند صوتی که بر منابع روش طبیعی و اخیرا معرفی شده است، روشی مناسب برای پیش یکنواخت نانوژرده و تولید کمپوزیت‌های زمینه فلزی می‌باشد. امواج صوتی بعضوی سیلوسیسیز از این یک منابع غیر قدرت و سبک ابزار ایجاد شده در اثر آن یک شار منفی را روی منابع ایجاد کند که می‌تواند، را به دور از یکدیگر می‌کشد. اگر ایجاد شده به این کافیم شناخت، سبک ابزار ایجاد شده می‌تواند حفراتی را در مانگی ایجاد کند که به این فلزات حفره‌ای یازده می‌باشد. خطرات فلزات در این مانگی ایجاد کننده در کابیتی با پی در پی، راه انداز حباب، توان مانگی ایجاد شده و با فکانس، بیشتر از یک آستانه خاص بسون، فرایند حفره‌ای ۹ یافتن می‌باشد. شور (شکل ۱-۹) [۱۸]

شکل این‌ها حباب‌ها مدت زیادی پایدار نیستند و فشار ایجاد شده در محیط بعدی باعث ترکیب حباب‌ها می‌شود. این همان بوده انتخاب حفره است که می‌تواند یک محیط غیر عضیفی برای واکنش‌های شیمیایی ایجاد کند. لحظه انفجار را دقیقه دقیق در نمود. ۸ تونی به هونگی مقطعی دمایی تا حدود ۱۰۰۰ درجه سانتی‌گراد K/۵۰۰ در نظر گرفته سرد کردن بیشتر از فلزات آلیاژ کربن‌پرده و ترشح‌گری آنها را افزایش می‌دهد. بنابراین، ساخت محصولات ریخت‌گری شده نانوکاپوژنی با کارایی بالا به هونگی عملی اکتشاف تریدره می‌ازد. از امواج مانند صوتی حتی می‌توان به عنوان یک عمل حذف کننده جراحی در ریخت‌گری فلزات استفاده کرد [۱۱-۱۳]

1. Plateau border
2. Drainage
3. metal matrix nanocomposites
4. Ultrasonic
5. Melt route
6. Cavitation
7. Transient cavitation
8. Implosion of the cavity
9. Hot spot
قابیت ترشوندگی خوب آن و چگالی تقریبا یکسان با آلیاژهای آلومینیوم، به عنوان ماده تقویت کننده استفاده شد. بویر هیدرید تنبتتوم با ترکیب نشان داده شده در جدول 2 به عنوان عامل فومسازی استفاده شد که برای بهبود رفتار آراد شدن گاز به مدت 3 ساعت در دمای 450 درجه سانتیگراد تحت عملیات حرارتی قرار گرفت. EDS بودرهای هیدرید تنبتتوم قبل و بعد از عملیات حرارت می‌شود، در اثر انجام عملیات حرارتی یک لایه اکسیدی روی سطح ذرات هیدرید تنبتتومی تشکیل خواهد شد (شکل 2). این لایه اکسیدی، نه تنها دمای آراد شدن گاز از ذرات را به تأخیر می‌آورد، بلکه فاصله زمانی بین آراد شدن مولکول‌های هیدروژن از ذرات هیدرید تنباشی را نیز به تأخیر می‌آورد که می‌تواند زمان در دسترس برای انجام فرمایند فوم سازی را افزایش دهد [16].

ناکنون یژوهش جامعی در جهت تولید فوم نانوکامپوزیت تقویت شده با نانوذرات، با کمک امواج مافوق صوت و بررسی‌های ریزساختاری و نفکش آن در پدیده ریزش صورت گرفته است. از این رو هدف از انجام این یژوهش، تولید فوم نانوکامپوزیت سول سیستمی به روش ذوبی و با کمک امواج مافوق صوت، مطالعه ریزساختار و پدیده ریزش در آن می‌باشد.

مواد و روش یژوهش

آلیاژ آلومینیوم با ترکیب نشان داده شده در جدول 1 به عنوان ماده زمینه انتخاب شد. برای انتخاب یک تقویت کننده مناسب برای نانوکامپوزیت آلومینیوم تقویت شده با نانوذرات، فاکتورهای معمول مانند چگالی، ترشوندگی و واکنش‌پذیری شیمیایی در دماهای بالا با استناد به گرفته شود [14]. بر این اساس، اکسید سیلیسیم به خاطر
یوپرده‌های هیدرید تیتانیم (الف) قبل، ب) بعد از عملیات حرارتی

شکل 2- نتیجه آنالیز EDS

جدول 1- ترکیب شیمیایی آلیاژ زمینه

<table>
<thead>
<tr>
<th>عنصر</th>
<th>درصد وزنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>8/2</td>
</tr>
<tr>
<td>Sn</td>
<td>1/16</td>
</tr>
<tr>
<td>Pb</td>
<td>1/10</td>
</tr>
<tr>
<td>Ni</td>
<td>1/5</td>
</tr>
<tr>
<td>Cr</td>
<td>1/4</td>
</tr>
<tr>
<td>Ti</td>
<td>1/6</td>
</tr>
<tr>
<td>Zn</td>
<td>1/5</td>
</tr>
<tr>
<td>Mg</td>
<td>1/3</td>
</tr>
<tr>
<td>Mn</td>
<td>0/2</td>
</tr>
<tr>
<td>Cu</td>
<td>0/1</td>
</tr>
<tr>
<td>Fe</td>
<td>0/3</td>
</tr>
<tr>
<td>Si</td>
<td>0/1</td>
</tr>
</tbody>
</table>

جدول 2- مشخصات پودر هیدرید تیتانیم استفاده شده به عنوان عامل فوم سازی

<table>
<thead>
<tr>
<th>فرمول شیمیایی</th>
<th>جرم مولی (g/mol)</th>
<th>جرم مولی (g/mol)</th>
<th>چگالی (g/cm³)</th>
<th>چگالی (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiH₂</td>
<td>> 0/98</td>
<td>> 0/98</td>
<td>3/76</td>
<td>3/76</td>
</tr>
</tbody>
</table>

در یک دقيقة به‌وسیله همزمان مکانیکی هم زده شد. سپس مخلوط در دمای 100 ± 6°C به دقت 2 دقیقه تفت داشته شد تا هیدرید تیتانیم تجزیه شده و تولید گاز هیدروژن نماید. در ادامه فرم تولید شده از کوره خارج و در هوا خنک شد.

برای تولید محصول فومی، ابتدا شمش آلیاژ در کوره‌های با دمای 750 ± 6°C ذوب شد و به‌منظور افزایش ترشوندگی در دمای 2/5 درصد وزنی آلیاژ به مذاب اضافه شد. سپس 1/5 درصد وزنی نانوذرات اکسید سیلیسیوم با مایلگین ابعاد 40 نانومتر با استفاده از تکنیک ریخته‌گری گردایی 1 در دمای 680 ± 6°C و با سرعت 1/5 در دقیقه به آلیاژ مذاب اضافه شدند. پس از اینکه مذاب به مدت کافی به کمک همزن مکانیکی هم زده شد، برای به‌کارگیری MIP برای ریخته‌گری، ابتدا در دمای 1/450 و با سرعت 3/10-1/5 دقیقه مذاب را می‌بستند که فشرده ترشوندگی و یخ نانوذرات در مذاب آلیاژ را به‌صورت پیوسته به‌وجود می‌آورد.

برای ریخته‌گری آن، پودر هیدرید تیتانیم پیش عملیات حرارتی شده، به مذاب اضافه شد و مخلوط بلافاصله به

1- Stir Casting
مجله مواد نوین/ جلد ۴/ شماره ۴/ تابستان ۱۳۹۳

۱۳۹۳

ممناس خواهد شد. شعاع این داره به عنوان شعاع منطقه پلاتو تعیین می‌شود.\\n
نتایج بسته آمره در رابطه ۱ قرار داده شد و سپس مقادیر بسته آمره از این رابطه به نتایج بسته آمره به کمک آنالیز MIP مقایسه شد.

\[A = 0.161r^2 + 1.732rh + 0.432h^2 \]\\n
در این رابطه A مساحت منطقه پلاتون، \(r \) ضخامت دیوارهای منطقه پلاتون و \(h \) ضخامت اصلی دیوارهای سلول نسبت به کمک روابط ۲ و ۳ محاسبه شد.

\[p_i/p_o = \text{یکای نسبی} \]

\[\text{در تصویر } ۹ \text{ دیده می‌شود، چهار نقطه در راستای ارتفاع نمونه انتخاب شد.} \]

برای محاسبه ضخامت دیوارهای سلول و مساحت منطقه پلاتون در هر یک از این نقاط، مانند آنچه در شکل ۱۰ برای یکی از نمونه نشان داده است، ابتدا منطقه پلاتون مورد نظر به کمک کره‌ای از پلاستیکی به شکل ۹ کپسول شناختی شد. سپس ضخامت دیوارهای سلول منتیهی به آن منطقه تصویر می‌شود.

یک کپسول در ناحیه سیستمی‌های مسی راه اندازی شده است که در محوطه نواحی بی‌خوشه افزایش می‌یابد. در این مساحت، ضخامت دیوارهای سلول مورد نظر در مساحت پلاتون و مساحت دیوارهای سلول مورد نظر در مساحت پلاتون تغییر دهد که در این نقطه بی‌خوشه مانند آنچه در شکل ۱۰ برای یکی از نقاط نشان داده شده است. برای محاسبه شد.

در شکل ۱۲ نگرفته دیوارهای سلول منتهی به منطقه پلاتون و در افزایش منطقه پلاتون نمونه قومی (طبقه‌ای نمونه نشان داده شده) در شکل ۹، رسم نمونه است. همچنین گونه به دیده می‌شود، با حرکت از سطح نمونه قومی به سمت کاف، ضخامت دیوارهای سلول مجار به منطقه پلاتون کمتر می‌شود.

برای کمک رابطه ۱ و آنالیز تصویر به کمک نرم‌افزار MIP با رسم نگرفته‌ها سه در دو انتهای شدت، روش محاسبه عمدی به

\[1 \] Plateau border

2. Song
روش محاسبه مساحت به کمک نرم افزار می‌تواند منطقه پلاتوی هر سول به‌وسیله نرم افزار اتوکد شناسایی و سپس مساحت آنها با کمک شمارش تعداد پیکسل‌های تصویر به‌وسیله نرم افزار MIP آنالیز شد. اختلاف دیده شده در این دو منحنی می‌تواند ناشی از خطای کاربر هنگام جدا کردن منطقه پلاتو به‌وسیله نرم افزار اتوکد و یا فرضیات باشند که برای ساده‌سازی محاسبه مساحت منطقه پلاتو با روش عدید در نظر گرفته شده است.

همان‌گونه که در نمودارهای رسم شده در شکل 12 و 13 دیده می‌شود، با حرکت از سطح فوم به سمت کف آن هم‌زمان با کاهش ضخامت دیواره‌های سول منتهی به منطقه پلاتو، مساحت منطقه پلاتو به‌گونه معکوس افزایش می‌یابد (این رفتار در سه نمونه دیگر نیز به‌گونه مشابه دیده شد). این اثرات می‌توانند ناشی از گرافی مذاب و گرادیان فشار وابسته به نیروهای مویینگی در خلاف جهت نیروی گرافی باشد [17].

عملاً همزمان این دو اثر، به‌عنوان کاهش ضخامت دیواره‌های سول و افزایش مساحت منطقه پلاتو می‌تواند باعث به‌هم بیوستن حفرات شده که در قسمت‌های نزدیک به انتهای نمونه باعث تشکیل حفرات مركبی بسیار بزرگ خواهد شد. اگر پارامترها مانند زمان، دما و واکنش‌زدایی مذاب در فراÎاید قوم سازی به‌خوبی کنترل نشوند، این پدیده شدت یافته و باعث نشین شدن مذاب و فروپیوختن دیواره‌های سول می‌شود.

شکل ۳ - دستگاه آلتراسونیک استفاده شده برای یکش نانو ذرات در مذاب

شکل ۴ - روش محاسبه شعاع منطقه پلاتو [17].
شکل ۵- تصویر میکروسکوپ نوری از قوم سلول بسته تولید شده به روش ذوبی.

شکل ۶- تصویر میکروسکوپ نوری از مرز سه سلول متصل شده به یکدیگر.

شکل ۷- قوم سلول بسته آلومینیومی ساخته شده به وسیله سانگ و همکارانش [۲۰۱۰].
شکل 8- تصویر میکروسکوپ الکترونی رویشی از دیواره سلول در مجاورت حفره در پرزکنی ۳۰۰۰ برابر.

شکل 9- تصویر میکروسکوپی از مقطع طولی فوم ریخته‌گری شده به روش ذوبی.
شکل 10- مرحله ی برش آوردن منطقه پلاتو با کمک نرم افزار اتوکد.

شکل 11- محاسبه ضخامت دیواره‌های سلول به کمک نرم‌افزار MIP.
نتیجه گیری

در این پژوهش، نانوکامپوزیت زمینه آلومینیومی با استفاده از 5/0 درصد وزنی نانوذرات اکسید سیلیسیم و با استفاده از تکنیک‌های ریخته‌گری گردابی و اسواج مانفوق صوت بهره شد. سپس فوم نانوکامپوزیتی به- Al-SiO۲ به وسیله عامل قوم ساز هیدرید تنابنی تولید گردید. ساختار چند و چهار سلول‌ها در محصول تولیدی و همچنین توزیع مناسب و یکتاخت نمونه‌هایی در زمینه نانوکامپوزیت حاصل گی. گویای موفقیت در تولید فوم نانوکامپوزیتی بود و آنالیزهای انگیز شد که روش‌ها و ویژگی‌های فرمول با فرمول ریخته‌گری شده به که یکی از موضوعات مربوط به قوم‌ها و روش‌های نشان داد. پیش‌بینی می‌شود این پیشنهاد می‌تواند باعث افزایش همکاری

References

بررسی ریزساختاری فوم نانوکامپوزیتی آلومینیوم تقویت شده با ...